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Abstract. We explore the phase diagram of the attractive Hubbard model from the point of view of
phase transition theory. Using the quantum Monte-Carlo technique, the scaling theory of quantum critical
phenomena and the mapping to the XY model we investigate the critical properties along the temperature,
band filling and coupling strength axes of the phase diagram. Particular emphasis is devoted to the insulator
to superconductor and superconductor to normal metal transitions driven by the variation of the coupling
strength U . We also discuss the particular similarities between this simple lattice model and the high-Tc

cuprates: both systems exhibit a phase transition along a certain critical line as a function of a particular
control parameter, which is e.g. the strength of the attractive coupling |U | in the case of the Hubbard model
and the electron doping in the copper oxide planes for the cuprates; both show a remarkable crossover
along this phase transition line with similar consequences. At one end point (overdoped/small-U regime) we
find a behavior similar to a conventional BCS-type superconductor, the system undergoes a normal metal
to superconductor transition (NS), whereas at the other end (underdoped/large-U limit) a description in
terms of Bose-Einstein condensation (BEC) of preformed pairs is more adequate, with a superconductor
to insulator critical endpoint (SI). There superconductivity occurs when the phases of the pairs become
coherent, not when the pairs are initially formed. In addition to the fixed electron density, interaction driven
crossover the Hubbard model undergoes a further T = 0 quantum transition from a (super-) conductor to
an insulator for ρ→ 0.

PACS. 71.10.Fd Lattice Fermion models (Hubbard model, etc.) – 74.25.Dw Superconductivity phase
diagrams – 02.70.Lq Monte-Carlo and statistical methods

1 Introduction

Many physical properties of cuprate superconductors de-
pend on hole doping. The generic doping dependence of
the transition temperature Tc is schematically depicted in
Figure 1. At a certain doping level xu, the so-called under-
doped limit, the materials undergo at T > 0 an insulator
to anomalous metal transition, and at T = 0 an insulator
to superconductor transition. As x is increased Tc rises
rapidly and attains a maximum at xm (optimum doping).

This behavior appears to be a generic feature of the
cuprate superconductors [1–3]. In some compounds a fur-
ther increase of the doping level leads to more metallic
normal state properties, but Tc now decreases and falls
to zero in the overdoped limit x0. Here, these materials
undergo at T = 0 a superconductor to normal metal tran-
sition.

Although the schematic phase diagram looks quite
symmetric, there are fundamental differences between the
underdoped and the overdoped regime: For example, the
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temperature dependence of the static spin susceptibility
from NMR Knight shift measurements [4] shows a pro-
nounced bending and decrease far above Tc in the under-
doped regime (“spin gap”). Recent spectroscopic experi-
ments established the existence of a pseudogap in the nor-
mal state of underdoped cuprates [5,6]. This pseudogap
(i.e. the suppression of the single particle density of states)
opens not at the superconducting transition temperature
Tc, but at a much higher temperature, signalling the ex-
istence of paired carriers whithout long-range coherence
[7,8]. Superconductivity, however, does not form without
this long-range coherence among the pairs, which is es-
tablished at a lower temperature. Indirectly, the gap is
also inferred from a variety of other experiments prob-
ing the thermodynamics of charge and spin excitations.
The contribution of the new experiments was to show
that the pseudogap above Tc has essentially the same
magnitude and symmetry as in the state below Tc. Fur-
ther support for this insulator to superconductor to nor-
mal metal scenario in the cuprates comes from recent
experiments on the low temperature normal state resis-
tivity from Ando et al. [9], as well as from evidence of
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Fig. 1. Schematic temperature-doping phase diagram of the
high-Tc cuprates; SC denotes the superconducting state, en-
closed by the Tc phase transition line, with xu, xm and x0

marking the underdoped, optimal doped and overdoped case.
T ∗ indicates the temperature, below which the opening of a
pseudogap is observed.

critical fluctuations above Tc [10]. This normal state pair-
ing scenario is fundamentally different from the BCS
model, in which the coherence between pairs is already
sufficient for superconductivity when the pairs are formed.
But there is an astonishing qualitative similarity to re-
cent discussions of a BCS-type superconductivity to Bose-
Einstein-condensation crossover as a function of the cou-
pling strength in the simple 1-band attractive Hubbard
model.

It is evident that the attractive onsite density-density
interaction term favors double occupancy of sites and
hence the formation of pairs. If these pairs of charge 2e
are mobile, superconductivity will occur below a critical
temperature. Because of this conceptual simplicity, the
attractive Hubbard model allows an easy investigation of
the crossover from low to strong coupling, from extended
to local pairs, from BCS-like superconductivity to a Bose-
Einstein condensation (BEC) of local pairs, just by tuning
the interaction parameter U , which acts as a control pa-
rameter for the phase transition line in analogy to the
carrier doping in case of the cuprates. The evolution from
Cooper-pair superconductivity for small U to local pair
superconductivity for large U is smooth. Since both in
the small- and large-U limit Tc vanishes, evidently there
must be an optimal Tc for an intermediate value of |U |/t.
In that sense it forms the basic minimal model to give the
proper phase transition phenomenology. Nevertheless, we
certainly do not propose the negative-U model as a realis-
tic microscopic high-Tc model itself, but use it to deepen
our understanding of the phase diagram of high-Tc mate-
rials and to explore the effects of pairing fluctuations on
various thermodynamic properties (density of states, spin
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Fig. 2. “Crossover” from a BCS-like endpoint to a BEC end-
point along the superconducting phase transition line. δ sym-
bolizes the control parameter driving the crossover, which is in
this diagram associated with the (inverse) coupling strength in
case of the attractive Hubbard model and the electronic carrier
doping in case of the cuprates.

susceptibility etc.). Indeed, from the aspect of universality
and critical phenomena our analysis strongly reveals close
similarities between the overdoped regime in the cuprates
and the weak coupling regime of the attractive Hubbard
model (both are close to a superconductor—normal metal
critical point) on the one side, and the underdoped re-
spectively strong coupling regimes (which are close to a
superconductor to insulator critical point) on the other
side (see schematic diagrams, Figs. 1 and 2).

2 The attractive Hubbard model

We consider the 2D attractive Hubbard model (“negative-
U model”) on a square lattice:

H = −t
∑
〈ij〉σ

(c†iσcjσ + h.c.)− U
∑
i

ni↑ni↓ − µ
∑
iσ

niσ,

(2.1)

where c†iσ (ciσ) denote fermionic creation (annihilation)
operators at site i with spin σ, and t is the kinetic term
between two neighboring sites, which serves as an energy
unit throughout the paper. The limit 〈ij〉 restricts the sum
to next-neighbors, U denotes the interaction (“coupling”),
which is chosen to be attractive, and µ is the chemical
potential.

In the free case (U/t = 0) we have the well-known
dispersion relation for the D-dimensional system,

ε(k) = −2t
D∑
α=1

cos(kα)− µ. (2.2)

With the exception of the critical endpoints and ρ = 0.5
(ρ is the density of electrons per site and per spin, i.e.
ρ = 1 corresponds to the fully occupied lattice with 2 elec-
trons of opposite spin at each site), the phase transition
line is supposed to be a line of D-dim. XY critical points,
while the special point ρ = 0.5 corresponds to a D-dim.
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XY Z critical point. For this reason the transition tem-
perature vanishes in 2D at ρ = 0.5 (halffilling); one finds
a coexistence of superconducting and long-range charge-
density correlations, which, in 2D, drive the effective KT
transition temperature to zero, T 2D

KT (ρ = 0.5) = 0,
accounting for another critical point ρ2D

c = 0.5. At zero
temperature T = 0 there are two critical endpoints,
namely ρc = 0 and ρc = 1, where the model undergoes
an insulator to superconductor transition.

In addition to the density-driven transitions there are
also interaction driven transitions, which we want to focus
on in the further context of this report: As a function of
coupling strength U and fixed ρ there is a phase transition
line with critical endpoints U = 0 and U =∞. At T = 0 a
normal metal to superconductor transition occurs at U =
0, while at U = ∞ there is a superconductor-localization
(insulator) transition. In the strong coupling regime this
model can be mapped onto hard core bosons on a lattice,
in which Cooper pairs are treated as conserved particles
obeying Bose statistics.

3 Methods

3.1 Quantum Monte-Carlo and Hartree-Fock

Our central numerical technique is the temperature-de-
pendent formulation of a Quantum Monte-Carlo (QMC)
algorithm in the grandcanonical ensemble, which is largely
based on the work of Hirsch, supplemented by the Maxi-
mum Entropy method for analytic continuation to extract
spectral properties [12,13]. For technical detail we refer to
references [11,14].

Additionally we supplement our QMC data with dis-
crete lattice Hartree-Fock calculations (BCS-type) using
the standard gap equation for s-wave superconductors
(∆(k) = ∆) with local interaction V (k) = U ,

1

U
=
∑
k

1

2E(k)
tanh

(
βE(k)

2

)
(3.1)

and

2ρ− 1 = −
∑
k

ε(k)

E(k)
tanh

(
βE(k)

2

)
(3.2)

with the extended interacting dispersion

E(k) =
√
ε(k)2 + ∆2, (3.3)

respectively in terms of the density of states

1

U
= 2

∫ ωT

ωB

N(ω)dω
√
ω2 + ∆2

· (3.4)

ε(k) is the dispersion in the noninteracting case (Eq.
(2.2)), β = 1/T the inverse temperature, ∆ the gap,
µ̄ = µ − ρU the chemical potential including a Hartree
shift, and U the strength of the attractive interaction; ωT,
ωB are the respective top and bottom band edges of the

density of states N(ω). Because ∆ vanishes at and above
Tc, the gap equation also fixes the transition temperature.

Using a Bogoliubov-Hartree-Fock approximation Den-
teneer et al. [15] derived the following explicit formula
for the helicity modulus Ys of the 2D attractive Hubbard
model

ΥHF
s =−

t

N

×
∑
k

( ε(k)

2E(k)
cos(kx)tanh(βE(k)/2)

+
tβ sin2(k)

2 cosh2(βE(k)/2)

)
. (3.5)

The expression reduces in the groundstate (β →∞) to

ΥHF
s (T = 0) = −

t

N

∑
k

ε(k) cos(kx)

2E(k)
≡

1

8

∫ ωT

ωB

N(ω)ω2dω
√
ω2 + ∆2

.

(3.6)

Comparisons with quantum Monte-Carlo data show re-
markably good qualitative and even quantitative agree-
ment with this expression [15–17].
In the strong coupling limit (δ(= 1/U)→ 0), noting that
Tc ∝ t2/U , it is readily seen that Υs(T ) becomes temper-
ature independent, approaching

lim
U→∞

ΥHF
s (T ) = ΥHF

s (T = 0) ≈
1

2DU

∫ ωT

ωB

dωN(ω)ω2.

(3.7)

In D = 2 dimensions this reduces to

Υs(T = 0, U →∞) =
t2

U
· (3.8)

Next we consider the weak coupling regime, U → 0, where
the superconductor to normal metal transition occurs. The
helicity modulus tends for U → 0+ to a finite value,

Υs(T = 0, U → 0+) > 0, (3.9)

while it is clearly strictly zero for U = 0, thus leading to
a discontinuous behaviour at the normal metal to super-
conductor critical point.
In this regime the transition temperature becomes very
small, the helicity modulus (Eq. (3.5)) may be written as

ΥHF
s (T ) = ΥHF

s (T = 0)

−
∑
k

(
2t2 sin2(kx)

(
−
∂f(βE(k)/2)

∂E(k)

))
,

(3.10)

f(x) = (exp(x) + 1)−1, (3.11)

where ΥHF
s (T = 0) is given by the above expression. Close

to THF
c equation (3.5) reduces to

ΥHF
s (T )

ΥHF
s (T = 0)

≈ 2

(
1−

T

THF
c

)
. (3.12)
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3.2 Scaling theory of quantum critical phenomena

The scaling theory of quantum transitions (see e.g. Refs.
[18–21]) is based on the central assumption that a sin-
gle characteristic length scale ξ exists near the transition,
which diverges by approaching the critical point. For a
phase transition driven by the temperature, T − Tc, the
difference from the critical temperature, measures the dis-
tance from the critical point. At a transition like metal-
insulator, which is basically a quantum phase transition
at T = 0, the phase transition is controlled by quantum
fluctuations through parameters such as the band width
or the chemical potential rather than the temperature,
i.e., in contrast to finite temperature, where static critical
phenomena can be discussed with no regard to the sys-
tems dynamics, the fluctuations at zero temperature are
purely quantum mechanical, so that static and dynamic
quantities are linked. We assume the existence of a field,
controlling the phase transition, which we denote with the
dimensionless quantity δ (control parameter). For exam-
ple we assume at a MI-transition for the metallic and the
insulating phases δ > 0 and δ < 0, respectively, and δ = 0
gives the critical point.
(a) The correlation length exponent ν̄ determines how ξ
diverges as δ → 0 (“spatial correlation length”)

ξ = ξ±0 |δ|
−ν̄ (3.13)

and (b) the temporal correlation length is given via

ξτ = ξ±τ,0|δ|
−ντ . (3.14)

A characteristic frequency is determined from this dynam-
ics

Ω ∝ ξ−z (3.15)

with the dynamical critical exponent

z =
ντ

ν̄
· (3.16)

At positive temperatures the imaginary temporal extent,
0 ≤ τ ≤ β of the system is finite. Thus, ξτ does not diverge
and the quantum dynamics do not affect the static critical
behavior; only at T = 0, ξτ may diverge.

When it does, the classical hyperscaling argument
must be modified, which leads the free energy singular
part fs to the form

fs ∝ ξ
−dξ−1

τ ∝ |δ|2−ᾱ. (3.17)

Using the above definitions this yields the generalized hy-
perscaling relation

2− ᾱ = ν̄(D + z), (3.18)

with D being the dimension of the system. The corre-
sponding universal amplitude relation is

R±τ = ξ±τ0ξ
D
0 A
±, (3.19)

at T → 0 we define α and A± via

κ := −
∂2fs

∂δ2
≈
A±

α
|δ|−α. (3.20)

One generic choice for δ is the chemical potential µ; in
this case κ corresponds to the compressibility, and the
band filling is given via the first derivative of fs. Above
some critical dimension D = Dc hyperscaling is violated.

The occurrence of superfluidity is conveniently de-
scribed in terms of the free energy density in the presence
of an imposed order-parameter twist with wave vector k0,
from which one derives the helicity modulus

Υs(δ) = lim
k0→0

∂2fs

∂k2
0

(3.21)

(see above, Eq. (3.5)), with a related diverging length in
the ordered phase as

ξΥ = (ξτ (δ)Υ (δ))1/(2−D). (3.22)

Therefore according to the scaling theory of phase transi-
tions Tc and the helicity modulus vanish as

Tc = E|δ|zν̄ (3.23)

Υs = lim
k0→0

∂2fs

∂k2
0

= F |δ|2−ᾱ−2ν̄ = F |δ|ν̄(D+z−2). (3.24)

It is important to recognize that relation equation (3.24)
requires the validity of hyperscaling, while equation (3.23)
follows directly from finite size scaling in the time direc-
tion.
In D = 2 the ratio

lim
δ→0

Υs(δ)

Tc(δ)
=
F

E
= Q0 (3.25)

is then an universal number, with a characteristic value
within a particular universality class. It undergoes in the
strong coupling limit – the regime, where the attractive
Hubbard model corresponds to hard core bosons on a lat-
tice – at T = 0 for U → ∞ a superfluid-insulator transi-
tion, with zν̄ = 1, ν̄ = 1

2 , α = 0, where

δ = t/U. (3.26)

Moreover, it follows that

Υs(δ) ∝ Tc(δ)
D+z−2

z , (3.27)

with a nonuniversal proportionality factor in D > 2.

3.3 Approximate treatment of the phase transition line

An approximate treatment of the phase transition line is
readily obtained by mapping the finite temperature be-
havior of the Hubbard Hamiltonian onto the classicalXY -
model. This mapping assumes that the order parameter
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is a complex scalar, corresponding to a spin vector with
n = 2 components. This mapping is not applicable for the
particular case ρ = 0.5, where the order parameter, as
mentioned above, adopts n = 3 components.
A Ginzburg-Landau functional for this model has then the
form [22]

F =
∑
l

(
a(|T |)|∆l|

2 + b(T )|∆l|
4

+ c(T )
∑
ν

|∆l −∆l+ν |
2
)
. (3.28)

l denotes the lattice sites and ν denotes the nearest neigh-
bors on a hypercubic lattice. Neglecting amplitude fluctu-
ations in the order parameter,

∆l = |∆l| exp(iφl) ≡ ∆0 exp(iφl),

the functional F reduces to

F = N
(
a(|T |)∆2

0 + b(T )∆4
0

)
+ J(T )

×
∑
l,ν

(1− cos(φl − φl+δ)), (3.29)

J(T ) = 2∆2
0c(T ), (3.30)

corresponding to the classical D-dimensional XY -model
with nearest neighbor coupling J(T ):

HXY = −J(T )
∑
l,ν

cos(φl − φl+δ) (3.31)

with the transition temperature (into a ferromagnetically
ordered state corresponding to superconducting order via
the above shown identification (3.30))

Tc = QJ(Tc), (3.32)

where Q depends on dimensionality. Recent Monte-Carlo
estimates [23,24] are for

2D : Q ≈ 0.898, (3.33a)

3D : Q ≈ 2.202. (3.33b)

Neglecting topological excitations, Hamiltonian (3.31) re-
duces to

HXY = −
J(T )

2

∫
dDr(∇φ)2. (3.34)

The helicity modulus is then simply

Υs(T ) = J(T ) (3.35)

and given by the previously shown Bogoliubov-Hartree-
Fock expression (3.5) for ΥHF

s .
In combining the equations (3.5), (3.32) and (3.35) we find
for the D-dimensional Hubbard model the equation

Tc ≈ QΥ
HF
s (Tc). (3.36)

Its solution provides estimates for the phase transition
line. The transition temperature is then defined as the
temperature where the Hartree-Fock expression for the he-
licity modulus (3.5) coincides with relation (3.36). The re-
sulting critical temperature Tc is smaller than the Hartree-
Fock estimate THF

c , the reduction vanishes for |U | → 0.
In the weak coupling regime, U → 0, equations (3.12) and
(3.36) yield

Tc ≈
2QΥHF

s (T = 0)

1 +
2QΥHF

s (T=0)
THF

c

−→
U→0 THF

c . (3.37)

Thus, in the weak coupling limit we recover asymptotically
the Hartree-Fock transition temperature given by the gap
equation.
ForD = 2 one obtains in the strong coupling limit U →∞
with equations (3.32) and (3.36)

Tc(U →∞) = QΥHF
s (U →∞) ≈ 0.898

t2

U
. (3.38)

We note that this relation also follows from the scaling
theory as described in Section 3.2, stating that in D = 2
and close to the superconductor to insulator transition
the ratio Q0 ≈ 1/0.898 = 1.114 (Eq. (3.25)) becomes uni-
versal. From degenerate perturbation theory and the fact
that the insulator is not compressible the relevant critical
exponents can be derived explicitly. It then follows that
the superconductor to insulator transition occurring at
U →∞, i.e. control parameter δ → 0, is in the universal-
ity class of the generic superfluid to insulator transition.
We have seen that equation (3.36) correctly reproduces in
both cases, the strong and the weak coupling limit, the
essential asymptotic behavior. Therefore it is expected to
provide a rather reasonable description of the phase tran-
sition line.

3.3.1 Ideal Bose gas

As a first example we consider the onset of superfluidity
in the ideal Bose gas; for D = 3 dimensions we find

zν̄ =
2

3
, z = 2, ν̄ =

1

3
, (3.39a)

and more generally for D > 2:

zν̄ =
2

D
, z = 2, ν̄ =

1

D
· (3.39b)

At finite temperatures the corresponding exponents adopt
the values

ν =
1

D − 2
, α =

D − 4

D − 2
, (3.40a)

γ = 2ν =
2

D − 2
, η = 0, 2 < D ≤ 4. (3.40b)

Thus, the critical exponents for the quantum transition
at the onset of superfluidity (OS) in an ideal Bose gas are
simply the classical ones in D+2 = D+z dimensions, i.e.

ν̄ = ν(D + 2) = ν(D + z). (3.41)
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3.3.2 Non-interacting fermions: Density-driven metal to
insulator transition

Next we want to discuss non-interacting fermions (U/t =
0) with an energy given by equation (2.2). At T = 0 a
metal to insulator transition occurs when the chemical
potential µ approaches the bottom of the band,

µ→ µB ≡ −2Dt. (3.42)

In this limit we can derive the following critical exponents:

z = 2, η = 0, (3.43)

ν̄ =
1

2
, ᾱ =

D − 2

2
· (3.44)

The upper critical dimension is Dc = 2, following from
the hyper-universal exponent relation.
This leads us finally to the relation between the chemical
potential µ and the bandfilling ρ

ρ ∝ (µ− µB)1/2 : D = 1 (3.45a)

ρ ∝ (µ− µB) : D = 2 (3.45b)

ρ ∝ (µ− µB)3/2 : D = 3. (3.45c)

3.3.3 Interaction driven transitions

Collecting previous remarks we find:
(1) For fixed band filling the model undergoes at T = 0
and U → 0 a superconductor to normal metal transition;
in the weak coupling limit the Hartree-Fock or BCS ap-
proximation is expected to become exact. Using the HF
expressions we obtain the following critical exponents:

zν̄ =
1

2
, ν̄ =

1

2
, z = 1, ᾱ = 0. (3.46)

(2) The strong coupling treatment provides for the expo-
nents

zν̄ = 1, ν̄ =
1

2
, z = 2, ᾱ = 0. (3.47)

4 Results: Phase diagram

In general the phase diagram of the attractive Hubbard
model is three-dimensional, depending on the coupling
strength |U |, the fermion (electron) density ρ and the tem-
perature T .

First we want to present quantum Monte-Carlo results
for a U -T -phase diagram of the attractive Hubbard model.
We examined the 2D attractive model at an electron den-
sity ρ = 0.4 per spin and lattice site, which approximately
corresponds to a maximum in Tc(ρ) for fixed U . In D = 2
at halffilling, Tc is zero, due to the coexistence of super-
conductivity and CDW long-range order. There the sys-
tem has Heisenberg symmetry, which does not allow for
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Fig. 3. Temperature-interaction phase diagram of the attrac-
tive 2D Hubbard model, electron density per spin is ρ = 0.4.
The filled square symbols represent the QMC phase transition
line (Tc) into the superconducting state (“superconductor”),
measured via ODLRO in the s-symmetric pair correlation func-
tion (unscaled). The rhombic symbols denote the temperature
T ∗, below which a gap (“pseudogap”) in the single particle
density of states is detected, and the line with cross symbols
shows the Hartree-Fock phase-transition line from normal to
superconducting state.

the 2D KT-phase and therefore gives Tc = 0. Neverthe-
less a small deviation from halffilling destroys the Heisen-
berg symmetry and results in a finite Tc, with a maximum
around ρ = 0.4. Our own findings are in good agreement
with reference [25].

Figure 3 shows our QMC-results: we clearly find ev-
idence for a phase coherent superconducting state below
a critical condensation temperature Tc (or rather TKT in
a strict sense), in agreement with reference [25]; it is de-
tected as the inflection point in the long-range plateau
value of the s-wave pair correlations [11] as a function of
temperature,

χs(l) = 〈∆†(0)∆(l) + ∆(0)∆†(l)〉, (4.1)

where

∆†(l) = c†l c
†
l . (4.2)

The presented data are obtained for one particular finite
lattice (10×10 sites); they are not size scaled and provide
therefore only an upper bound. We augment the QMC
data in Figure 3 with a curve showing the estimates of the
HF theory for the transition temperature Tc, which gives a
monotonically increasing transition temperature with in-
creasing coupling strength U . This is in sharp contrast to
the QMC data, which show a saturation around U/t = 5
and even a suppression for large coupling strengths, indi-
cating a crossover from mean field-like behavior, which
describes the small-U region very well, to a local pair
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superconductivity (for which Tc → 0 for |U |/t → ∞).
The strong coupling behavior is rather well described by
a t/U -proportionality.

In addition we plot in Figure 3 T ∗, extracted from
density of states data N(ω = 0, T ): The temperature de-
pendence of the density of states at zero frequency shows
a suppression for decreasing T due to pairing fluctuations
(“pseudogap”). We defined T ∗ equivalently to Tc as the
inflection point in N(ω = 0, T ). This is strictly speaking
an underestimation, since the gap itself certainly starts to
occur earlier, but a numerical detection of a ‘first occur-
rence’ from a discrete set of data points is rather difficult
and unreliable. Furthermore, we want to remind that the
spectral QMC data are obtained via an analytical contin-
uation with the maximum entropy method [12,13], giving
rise to an additional degree of uncertainty in the estima-
tion of very tiny features. The pseudogap becomes only
detectable if it has already a rather large size. Usually
one associates the first appearance of a pseudogap dip in
the DOS with T ∗, thus finding even higher values for T ∗

(which indeed brings T ∗ even closer to the mean field pre-
diction for Tc).

The three temperature regimes T � T ∗, T ∗ > T > Tc

and Tc ≥ T can also be clearly detected in the shape
of the bandstructure, Figure 5. The bandstructure is ob-
tained by plotting the QMC momentum resolved spec-
tral density A(k, ω) vs. k, ω (see Ref. [11], note that
N(ω) =

∑
kA(k, ω)). The high temperature regime

T � T ∗ has predominantly single-band character; this sin-
gle band splits with decreasing temperature well above Tc

into two distinct bands. These bands change their shape
to a system of bands similar to the prediction of e.g. a
BCS theory of superconductivity, when the system under-
goes its phase transition into a coherent state at Tc. It
should be noted that the change of the band structure
from the normal state pseudogap regime to the supercon-
ducting regime causes a distinct change of the density of
states: In the superconducting regime we find extended
‘flat’ band regions (visible around k = (π, 0) in Fig. 5c),
which produce a density of states peak at the gap edges.
These gap-edge peaks allow a distinction between the nor-
mal state and superconducting state gap, although both
have the same absolute width. Such a feature is also ex-
perimentally found in ARPES experiments on underdoped
cuprates below the transition from the pseudogap to the
phase coherent regime (‘coherent particle peak’ [26]). The
peak itself has previously been observed a rather long time
ago by Baer et al. [27] in a photoemission study of the
BSCCO compounds. Our results show that the supercon-
ducting transition in the Hubbard model is clearly asso-
ciated with a change in the shape of the band structure
and thus the density of states. For details we refer to ref-
erence [28].

The occurrence of a gap in the single particle density
of states is connected with anomalies in several response
quantities, like e.g. a suppression of the static spin sus-
ceptibility χs(k = 0, ω = 0, T ), Figure 6, above Tc at the
same temperature T ∗, indicating a spin-singlet formation.
T ∗ goes to higher temperatures for increasing |U |. A full
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Fig. 4. Attractive Hubbard model, QMC, single particle den-
sity of states N(ω, T ) for a series of temperatures, obtained
with Maximum Entropy analytic continuation. The super-
conducting transition temperature Tc measured by the ap-
pearance of superconducting long-range correlations is below
T/t = 0.2, whereas the gap in the DOS as an indicator for pair
formation already appears at much higher temperatures. T ∗

(Fig. 3) is measured as the inflection point in N(0, T ). ρ = 0.4,
U/t = −6.0

description of the crossover from weak to strong coupling
superconductivity can be found in reference [11] and cita-
tions therein. We attribute T ∗ to a pair formation already
in the normal state, it is easy to see in Figures 4-6 that
the gap in the DOS appears at temperatures far above the
critical temperature Tc already for intermediate coupling
strength.

Up to now we have a phase transition line for fixed
ρ and variation of the control parameter coupling |U |/t;
this gives us for T = 0 a transition from a normal metal
at U = 0 to a superconductor for finite coupling |U | > 0
to an insulator for U → ∞. The weak coupling regime
is rather nicely described by a Hartree-Fock approach, as
expected, whereas the strong coupling regime shows rather
anomalous normal state properties; in particular we want
to emphasize the appearance of a gap in the normal state.

We also want to investigate the phase diagram in
the temperature-filling hyperplane: Tc(ρ). Figure 7 shows
QMC as well as HF data for the filling dependence of
Tc: The region around halffilling (ρ = 0.5) is rather
well described by a Gaussian-like dependency of Tc on
ρ. This is true for the QMC as well as the HF data.
Nevertheless, this does not account for the earlier men-
tioned fact that Tc(ρ = 0.5) = 0 due to a coexistence of
long-range superconducting (SC) and charge density wave
(CDW) correlations. The HF approach does not “see” the
CDW correlations, whereas the Tc in case of the presented
QMC data has been calculated only from pair correlation
functions, the CDW correlations are neglected. Clearly,
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Fig. 5. Attractive Hubbard model, temperature dependence
of the bandstructure. The figure shows the spectral weight
A(k, ω) obtained from QMC calculations in a gray shade cod-
ing, dark regions mark large values. The data are shown as a
function of frequency ω (ω = 0 corresponds to the chemical
potential) and momentum vector k along the usual triangle
(0, 0) → (π, 0) → (π, π) → (0, 0). 8 × 8-system, U/t = −8.0,
ρ = 0.4. The upper picture (a) is taken at very large tem-
perature T > T ∗, the white line sketches a simple U/t = 0
single free band, (b) results from a measurement in the pseu-
dogap regime T ∗ > T > Tc, where the single band splits into
two bands, a single particle band and a pair band, and (c) is
taken below the transition temperature Tc; the white lines in
the lower picture are the HF prediction for the band structure
below Tc fitted to the actual gap size.
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Fig. 6. Attractive Hubbard model, normalized static spin
susceptibility χ/χm vs. normalized temperature T/Tm, QMC
data, ρ = 0.4, U/t = −4.0 (2), U/t = −6.0 (©) and
U/t = −8.0 (4). Tm denotes the temperature, where χ ex-
hibits its maximum, χm is the corresponding value at Tm. In-
set: Temperature dependence of the susceptibility χs(T ); the
down-bending as an indicator for spin-singlet (i.e. pair) forma-
tion and therefore T ∗ shifts to higher temperatures for increas-
ing U .
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Fig. 7. Critical temperature as function of bandfilling
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c (ρ), Hartree-Fock and QMC data (2). Linear plot,
the curves are Gaussians (b exp(−(a(ρ−0.5)2))) fitting the be-
havior of the Tc-data for bandfillings around halffilling (HF,
U/t = −2.0, +; HF, U/t = −3.0, (�); QMC, U/t = −4.0,
(2). In a rigorous treatment, however, Tc vanishes in 2D for
ρ→ 0.5, as explained in the text.
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Fig. 8. HF critical temperature as a function of bandfilling,
THF

c (ρ). U/t = −2.0(+),−3.0(�),−4.0(×), log-log plot; the be-
havior in the low density limit ρ → 0 approaches asymptoti-
cally a linear curve (solid and dashed curve for different cou-
pling values), corresponding to a power law dependency with
exponent 0.5 (square root). QMC data (U/t = −4.0, (2)) are
also included, they nicely fit the low density square root be-
havior (a × ρ0.5, with a = 0.34, dashed curve) for a rather
extended range almost up to quarter filling.

the exact QMC data cause a ‘renormalization’ of the HF
data, accounting for the well-known effect of an overesti-
mation of critical temperatures in the framework of mean-
field theories.

In the low density limit, ρ → 0, Tc(ρ) undergoes a
crossover into a power-law dependency with exponent 0.5
(square-root), which is again found for HF as well as QMC
data. This crossover can be nicely seen in the double-
logarithmic plot of Figure 8; it shifts for increasing cou-
pling strength to higher densities. ρ→ 0 is a trivial normal
metal resp. superconductor to insulator transition.

Invoking again the quantum scaling approach one ex-
pects Tc ∝ ρzν̄ , so that zν̄ = 1/2. This particular value
can be understood in terms of the HF treatment, where
z = 1, ν̄ = 1/2. It is remarkable that the limiting case,
where Tc(ρ) adopts a square-root dependency, extends to
a very large ρ-region for the QMC data; the dashed line in
Figure 8 indicating this power law almost exactly fits the
data up to quarter-filling. The ‘renormalization’ of U can
be nicely seen, since the U/t = −4.0 QMC curve interpo-
lates between the U/t = −3.0 HF curve in the low density
limit and the U/t = −2.0 HF curve close to halffilling.

Following Furukawa et al. [29] we calculated the “aver-
age” chemical potential for the canonical ensemble of finite
size lattices within the canonical T = 0 PQMC formalism,
defined by

µ̄(ρ̄) =
E(ρ1)−E(ρ2)

ρ1 − ρ2
, (4.3)
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t

Fig. 9. Chemical potential µ as a function of the filling ρ,
ground state (T = 0) QMC data, U/t = −1.0 ((�), weak cou-
pling) and U/t = −12.0 ((2), strong coupling). The data nicely
fit to a parabolic curve (µ ∝ ρ2) in the weak coupling limit
(solid grey line) and to a linear curve (µ ∝ ρ) in the strong
coupling regime (thick black solid line). The steps in the QMC
curve results from a finite energy level spacing due to a finite
lattice (an appropriate U = 0 chemical potential for a 8 × 8
lattice is included with the dotted curve), which is smeared out
in the strong coupling case because of a sufficient line broaden-
ing. We include the infinite lattice size HF prediction for µ(ρ)
(thin black solid line) for comparison; it shows no charge gap
at halffilling.

where ρ̄ = (ρ1 +ρ2)/2, the ρi are adjacent integer particle
number fillings. In the thermodynamic limit this reduces
to

µ̄→ µ =
∂E(ρ)

∂ρ
· (4.4)

The results for µ(ρ, U) are shown in Figure 9: In the weak
coupling regime away from halffilling the QMC data are
nicely fitted by the Hartree-Fock prediction (besides the
usual finite size step – “closed shell” – structure, which
vanishes for L → ∞, as shown in Figure 9 with the in-
clusion of a finite lattice free system µ). At halffilling we
find a charge gap ∆c, in agreement with Furukawa [29],
which survives in the thermodynamic limit. µ(ρ) follows
a parabola (µ ∝ ρ2) for finite fermionic densities.

In contrast to this the strong coupling regime is fun-
damentally different: It is no longer in agreement with
the mean field prediction – as expected –, there is a large
gap at ρ = 0.5 (halffilling), and there is a crossover from
a quadratic dependency in the weak coupling regime to
a strong coupling linear dependency µ ∝ ρ. Note, that
the closed shell structure vanishes due to the interaction
broadening of the finite size energy levels: A free finite sys-
tem shows discrete δ-peak levels in the density of states,
and therefore the chemical potential remains constant
as long as one of these shells gets filled. Approximately,
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Fig. 10. Chemical potential for the ‘free’ U = 0 system (nor-
mal metal) in the limit ρ → 0, µ → µB (µB = −4t in the 2D
case). We find a crossover to a strictly linear behavior µ ∝ ρ
(well fitted by the relation µ = 12.4ρ+µB, grey line) when the
system approaches this ‘trivial’ insulator critical point. Dis-
crete system with 4× 106 k-space points.

0.0 0.1 0.2 0.3 0.4 0.5
ρ

−7.0

−6.0

−5.0

−4.0

−3.0

−2.0

−1.0

0.0

µ

U/t=1.0
U/t=3.0
U/t=4.0
U/t=6.0
U/t=8.0
U/t=10.0
U/t=12.0

Fig. 11. Chemical potential µ as a function of the filling ρ,
ground state (T = 0), QMC data, 8 × 8-lattice. The dashed
lines denote the two extremal cases, weak coupling quadratic
behavior and strong coupling linear dependency.

this argument is still true in a weakly interacting system.
But: This levels become broader with increasing coupling
strength until they eventually ‘touch’ each other and a
“quasi-continuous” density of states evolves, giving rise to
a continuous µ(ρ) curve even in a finite system, at least
on the level of integer particle increments or decrements.
As shown in the ground state QMC-data in Figure 11,
this crossover from weak coupling quadratic behavior to
strong coupling linear dependence is continuous and takes

place in the approximate coupling strength range between
U = 0 and U/t = −8, the latter being the bandwidth of
the free system. The charge gap shows in the investigated
range a linear dependence ∆c ∝ U .

Another crossover takes place in the (ρ → 0)-limit:
The system again undergoes a change from the parabolic
dependence to a linear one (µ ∝ ρ) for all |U | ≥ 0 and
ρ → 0 (“empty lattice insulator”), and thus approaches
another insulator critical endpoint (see Fig. 10) when the
chemical potential reaches the bottom of the band µB. If
we consider non-interacting fermions (U = 0, as shown in
Fig. 10) this is

µ→ µB ≡ −2Dt (= −4t in D = 2 dimensions). (4.5)

We should mention the fact that µB < −4t in the inter-
acting system, |U | > 0. The relation between the chemical
potential and the band filling is then given by

ρ ∝ (µ− µB) (4.6)

in D = 2 dimensions.
Now we want to focus on a more qualitative under-

standing of the phase diagram, and here in particular of
the T−U -part (Fig. 3) because of its qualitative similarity
to the phase diagram of the high-Tc cuprates (Fig. 1). Sim-
ilar to the crossover found in the cuprates and described
e.g. in references [1–3] we find a transition from a normal
metal to a superconductor to an insulator. In both cases
it is driven by a control parameter δ, which is the doped
hole concentration x in case of the cuprates and the cou-
pling strength |U | in case of the attractive Hubbard model.
The directly corresponding regimes are the weak coupling
Hubbard model and the overdoped cuprates, which are
both well approximated by a mean field treatment, and
the strong coupling Hubbard model and the underdoped
cuprates, both deviate strongly from mean field behavior,
and both exhibit distinct features like the normal state
gap. Therefore we use Sections 3.2 and 3.3 to gain deeper
insight: Figure 12 provides a set of ground state helicity
modulus data from the Bogoliubov-Hartree Fock approach
(Eq. (3.5)): Υs(|U |, T = 0) for fixed ρ. There are two dif-
ferent limiting cases:

– In the limit of vanishing coupling U → 0+, Υs(T = 0)
tends to a finite value, while it is strictly zero for U = 0,
therefore leading to a distinct discontinuity (Fig. 12).
Any small but finite coupling strength produces a su-
perfluid density, only limited by the electronic carrier
density as a reservoir to form pairs. Trivially, Υs(T = 0)
goes to zero for constant U and ρ→ 0 (Fig. 13): ‘empty
lattice insulator’.

– In contrast to the weak coupling regime, Υs(T = 0)→
0, continuously, for |U | → ∞, and in D = 2 one obtains
Υs(T = 0, |U | → ∞) ∝ 1/U .

Using the helicity modulus data and equation (3.36) we
can approximately describe the phase transition line, as
sketched in Section 3.3: The transition temperature is
simply defined as the temperature where the Bogoliubov-
Hartree Fock expression for the helicity modulus coin-
cides with relation (3.36), see Figure 14. Figure 15 gives
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Fig. 12. Helicity modulus Υs versus |U |/t for ρ = 0.4, d = 2,
T → 0.
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Fig. 13. Helicity modulus Υs(T = 0) versus filling ρ, weak-
coupling regime, U/t = −2.0; inset: logarithmic plot.

a phase diagram for the attractive Hubbard model in
the temperature-interaction hyperplane qualitatively and
quantitatively very close to the previously shown QMC
data.

We included in these figure a QMC estimate for inter-
mediate coupling calculated for a particular system size
(compare Fig.3) and from an in-depth KT-scaling analysis
after Moreo et al. [25]. For comparison the HF data are in-
cluded, too. We see that the important qualitative feature
is properly described: the critical temperature vanishes in
both limits, U → 0 and U → ∞, with a maximum in
between. In the weak coupling limit the line approaches
asymptotically the HF data, whereas in the strong cou-
pling regime a t2/U dependence is approached, as ex-
pected in the Sections 3.2 and 3.3. Noting that in the
Hartree-Fock treatment, leading to THF

c , phase fluctua-
tions are entirely neglected, it is clear that the reduction of
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Fig. 14. Estimation of Tc: Υ
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s versus T/t for ρ = 0.4, D = 2,

U/t = −4.0, thin line is the KT -relation.
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Fig. 15. Phase diagram: Tc vs. |U |, ρ = 0.4, d = 2. The dashed
line marks the HF transition temperature prediction (Tc ∝
exp(−a/|U |)), and the square symbols are QMC data: The
open square gives a scaled TKT -value for |U |/t = 4 according
to the work of Moreo et al., the filled square shows our QMC
result for |U |/t = 4, computed from the s-wave correlation
function of one finite lattice (see also Fig. 3).

the transition temperature from THF
c must be attributed

to these fluctuations. The large deviations for |U |/t > 2
clearly reveal that these fluctuations must be included to
obtain a valid description of the physics. It should be kept
in mind, however, that the expression (3.5) for the helic-
ity modulus does not include the topological excitations
(vortex-antivortex pairs) that the Kosterlitz-Thouless the-
ory considers. The fact that the HF-expression for Υs is un-
renormalized implies that the estimates are upper bounds,
as implicitly suggested by the properly scaled QMC datum
in Figure 15. Nevertheless, because the helicity modulus
measures the free energy increment associated with twist-
ing the direction of the order parameter, it becomes clear
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Fig. 16. “Uemura-Plot”: Tc versus Ys, const. ρ = 0.4, varia-
tion of the control parameter δ = 1/U . This graph allows us
to plot the dependence of two experimentally accessible quan-
tities, the critical temperature and the superfluid condensate
density ρs ∝ Υs(T = 0) without an explicitly dependence on
the particular ‘control parameter’ δ. ‘SI’ denotes the supercon-
ductor to insulator critical endpoint, ‘SN’ the superconductor
to normal metal point.

that the reduction of the transition temperature from the
HF-values must be attributed to phase fluctuations, which
in the approximation leading to Figure 15 does not include
topological excitations. THF

c provides an estimate, below
which uncondensed pairs occur within this approximative
framework, nicely supported by the previous QMC phase
diagram, Figure 3. There we estimated the pair formation
temperature T ∗, which we argued to be closely related
to the HF data. The “true” transition temperature is re-
duced by phase fluctuations, which also suppress the oc-
currence of phase coherence (i.e. off-diagonal long-range
order, superfluidity, superconductivity) in the intermedi-
ate temperature regime T ∗ ≤ T ≤ Tc. Below Tc the phase
coherence is established and superconductivity occurs. It
should be noted, however, that T ∗ (or rather THF

c ) is by no
means a rigourous borderline. Indeed, fluctuating pair cor-
relations are present at all temperatures. Their strength
decreases with rising temperature and does not necessarily
vanish above T ∗.

The emerging scenario for the 2D attractive Hub-
bard model phase diagram is sketched in Figure 16 in an
Uemura-like “universality plot” [30] Tc vs. Υs(T = 0), i.e.
critical temperature versus helicity modulus or rather su-
perfluid density. This type of plot allows us to get rid of the
specific control parameter driving the particular crossover
(|U | in case of the Hubbard model).

Again we can distinguish two distinct regions: The
weak coupling limit close to the normal state—supercon-
ductor transition (SN), where the helicity modulus or ra-
ther the superfluid density approaches a finite value for
|U |/t → 0+ and the strong coupling limit |U |/t → ∞,
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Fig. 17. “Uemura-Plot”, similar to Figure 15: variation of U ,
constant filling ρ = 0.4 (square symbols), ρ = 0.25 (triangles)
and variation of ρ, constant U/t = −2.0 (weak coupling regime,
stars). Whereas in the strong coupling regime the data points
collapse onto a single universal line, Tc = 0.898Υs(T = 0),
independent of the filling, the weak coupling regime is non-
universal.

where the system finally undergoes a superconductor to
insulator transition (SI). Clearly, in the strong coupling
regime all data collapse onto a single universal curve
Tc = 0.898Υs, as predicted in the previous Sections 3.2
and 3.3. Therefore the strong coupling limit close to the
SI transition occurring at U → ∞ is universal, but in
contrast for finite densities the weak coupling regime is
nonuniversal. In particular, the weak coupling part of the
curve is strongly ρ dependent, as one can see in Figure 17.
The weak coupling curve approaches the universal curve
and thus the SI critical endpoint asymptotically for ρ→ 0.

Whereas for different electron densities ρ (shown are
ρ = 0.25 (squares) and ρ = 0.4 (triangles) curves) the
strong coupling data collapse onto the same universal
curve, the weak coupling parts are different, i.e. non-
universal for finite ρ. The weak-coupling superfluid density
is dominated by the concentration of available charge car-
riers ρ, as we can see in Figure 17: The stars show Tc vs.
Υs(T = 0) for constant |U |/t = 2.0 and a series of electron
densities ρ = 0.025, 0.05, 0.1, . . . , 0.4. Vanishing ρ causes
a non-universal curve; for the above mentioned trivial case
ρ→ 0 the curve tends also to the SI fixpoint (‘trivial’ insu-
lator transition in case of vanishing carrier concentration).
Therefore, the weak coupling regime itself is characterized
by a nonuniversal behavior; the universal line will only be
re-approached when the system comes close to a further
superconductor-insulator critical point in case of ρ → 0,
the “empty band insulator”. The “Uemura-relation” be-
comes again linear und joins the strong coupling universal
line.
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Fig. 18. Tc(U) for various ρ-values; the maximum Tmax
c as an

estimate separating the meanfield and strong coupling regions
shifts to higher U-values with decreasing ρ.

Finally, we want to get a qualitative and approximately
quantitative phase diagram for the attractive Hubbard
model in the ρ-U -plane. For this purpose we extend the
described approximation technique for the Tc(U)-line into
the ρ-direction between ρ ∈ [0; 0.5[, Figure 18. As al-
ready stated earlier, there are two distinct regimes, the
weak coupling one with critical exponent z = 1 and
Tc ∝ exp(−a/U) and the strong coupling regime with
z = 2 and Tc ∝ 1/U . To ‘pin down’ the crossover we use
the position of the maximum Tmax

c , which roughly distin-
guishes both regimes. Nevertheless, the ‘crossover’ regime
is certainly not a sharp line, but rather a broad region,
separating two extremal endpoints.

Figure 19 tries to depict this crossover line. It is worth
noticing that the weak coupling regime shrinks to a rather
small region for ρ → 0.5 and extends up to the whole U -
axis for ρ → 0. This is in nice agreement with the naive
estimate that a mean field approach should be valid in the
whole interaction regime if ρ→ 0+.

5 Summary and conclusions

We provide a description of the phase diagram of the at-
tractive Hubbard model in two dimensions, using numeri-
cal QMC data for finite lattices, as well as estimates from
a Hartree-Fock approach for an onsite coupled lattice su-
perconductor and from a corrected approach taking phase
fluctuations into account. The phase diagram is charac-
terized by the following distinct features:

– The weak coupling regime is rather well described by
a mean field approach like HF; for T = 0, ρ fixed,
the system undergoes a normal metal U = 0 to su-
perconductor transition (NS, |U | > 0) as a function of
coupling strength.
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Fig. 19. U(ρ): the data points depict the U-value, where a
maximum in the appropriate Tc(U)-curve for fixed ρ appears;
it serves appropriate Tc(U)-curve for fixed ρ appears; it serves
as a measure to distinguish phase diagram regions where either
a BCS (below the curve) or a strong coupling treatment (above
the curve). The ‘crossover’ region along the U-axis is certainly
not a singular point, but rather an extended transitional region,
indicated by the grey shaded region.

– For large coupling the HF estimates for the transition
temperature increase, whereas a corrected approach,
described in the present work and based on earlier
publications of Denteneer et al. [15], finds a suppres-
sion of the transition temperature, which finally leads
to Tc → 0 for |U | → ∞. This result nicely agrees with
our QMC data. For |U | → ∞ the system undergoes at
T = 0 a superconductor-to-insulator transition (SI).

– At finite temperature in the weak coupling regime
the mean-field description of the NS-transition applies,
while in the large-U regime phase fluctuations domi-
nate, accompanied by an increase of the critical regime.

– In the large U regime, where THF
c diverges, we find a

regime where a pseudogap appears above Tc. We asso-
ciate this pseudogap with the appearance of preformed
pairs, which are formed at a temperature scale T ∗ far
above the superconducting condensation temperature
Tc. T

HF
c appears to be a rather good estimate for T ∗,

the ‘true’ condensation temperature is reduced to Tc

by phase fluctuations, which suppress the occurence
of phase coherence in the region between T ∗ and Tc.
It should be noted, however, that T ∗ is by no means
a rigorous borderline. Indeed, pairing correlations are
present at all temperatures.

– An investigation of the band structure as a function of
temperature (Fig. 5) reveals three qualitatively differ-
ent regimes: (a) T > T ∗: Only one band, roughly re-
sembling the free band shape, exists. (b) T ∗ > T > Tc:
Two bands, appearance of a pseudogap above Tc, no
phase coherence. (c) Tc ≤ T : ‘BCS’-like band struc-
ture; the ‘shape’ of the band structure changes at the
phase transition into a phase coherent superconducting
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Table 1.

z ν̄ ᾱ

NS, normal metal to superconductor, interaction driven ρ finite, U → 0+ 1 1/2 0

SI, superconductor to insulator, interaction driven ρ finite, U →∞ 2 1/2 0

NI, normal metal to insulator ρ→ 0, U = 0 2 1/2 0

SIw, superconductor to insulator, weak coupling treatment, density driven ρ→ 0, ‘weak’ U 1 1/2 0

SIs, superconductor to insulator, strong coupling treatment, density driven ρ→ 0, ‘strong’ U 2 1/2 0

Non-interacting fermions, density driven MI transition ρ ∝ (µ− µB)

Interacting fermions, QMC, finite density, weak coupling ρ ∝ (µ− µB)1/2

Interacting fermions, QMC, finite density, strong coupling ρ ∝ (µ− µB)

state, but not the magnitude of the gap. We find ex-
tended ‘flat’ band regions above and below the Fermi
edge (ω = 0), similar to the appearance of a ‘coher-
ent particle peak’ in ARPES experiments on under-
doped cuprates at the transition from the pseudogap
to the phase coherent regime [26,27]. Thus, the super-
conducting transition is clearly detectable in the shape
of the band structure and the density of states.

– An Uemura-like plot of the critical temperature versus
the helicity modulus or rather the superfluid density
reveals, that the system shows an universal behavior in
the strong coupling regime close to the SI transition,
whereas the weak coupling regime is nonuniversal.

– We summarize the results for the critical exponents in
Table 1, describing the phase diagram of the D = 2
attractive Hubbard model.
There are distinct transitions: The superconductor to
normal state (NS) and superconductor to insulator
(SI) for fixed ρ, occurring in the limits U → 0 and
U →∞, respectively, as well as density driven insula-
tor transitions in the different U regimes. In this view
the crossover from weak to strong coupling, or in other
words, the crossover from BCS- to Bose-Einstein su-
perconductivity corresponds to a crossover from a NS
to a SI critical point, as revealed by the different ex-
ponents.
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